WELD DEFECTS

WELD DEFECTS

DISCONTINUITY IN WELD DEFECTS ::

  • AN INTERUUPTION OF THE TYPICAL STRUCTURE IN THE MECHANICAL OR METALLURGICAL OR PHYSICAL CHARETERESTICS OF MATERIAL OR WELDMENT
  • DISCONTINUITY IS A DEFECT WHEN IT DOES NOT MEET THE PRODUCT REQUIREMENT

TYPES OF DEFECTS:

  • PLANAR

CRACKS, LAMELLAR TEARS

LACK OF FUSION

LACK OF PENETRATION

  • VOLUMINAR

POROSITY

SLAG

TUNGSTEN INCLUSION

INSPECTION METHOD IN  WELD DEFECTS:

JOINT RT UT PT MT VT
BUTT A A A A A
CORNER O A A A A
TEE O A A A A
LAP U O A A A
A – APPLICABLE O –   Marginally applicablity U- Not applicable

POROSTY – Types

  • SCATTERED POROSITY
  • CLUSTER POROSTY
  • LINEAR ALIGNED POROSITY
  • WORMHOLE – ELONGATED POROSTY

Porosity – Causes

  • Due to dissolved gases ( mostly H2 ) in the weld metal > the solubility limits when weld solidifies
  • H2 is supplied by gas shield, moisture in atmosphere, flux, coating, or water in the area of welding
  • Excess arc length
  • Moisture pickup in the low hydrogen electrodes
  • Surface contamination
  • Moist flux
  • Magnetic arc blow
  • Welding speed too high
  • Crater pipes
  • In TIG , MIG process loss of shielding, impure gas may causes porosity
  • More tendency in vertical & overhead position
  • At start and stop points due to unstable heat flow condition

SLAG & SOLID INCLUSIONS

  • Oxides and other non metallic solid materials entrapped between weld and base metal, or between weld metal and base metal

CAUSES

  • Loss of slag control due to poor manipulating technique and slag flooding advance of the arc because of the arc positioning
  • Incomplete inter-pass cleaning
  • Poor previous bead
  • Heavy mill scale or rust
  • Piece of unfused flux from electrodes with damaged coatings

INTRODUCTION ABOUT NDT

Introduction to Nondestructive Testing

For visitors who are not already familiar with NDT, the general information below is intended to provide a basic description of NDT and the most common test methods and techniques used when performing NDT.  As such it is not highly detailed or all encompassing, and for more comprehensive information readers should refer to ASNT publications such as the ASNT NDT Handbooks or the ASNT Personnel Training Publications (PTP) Classroom Training Series, all of which are available from ASNT’s bookstore.  Also, standards covering these test methods are listed on the “Codes and Standards Bodies” page under the NDT Resources Center tab.  To maintain consistency, the techniques described for each test method are those listed in the 2011 edition of ASNT’s Recommended Practice No. SNT-TC-1A.

What Is Nondestructive Testing?

Nondestructive testing (NDT) is the process of inspecting, testing, or evaluating materials, components or assemblies for discontinuities, or differences in characteristics without destroying the serviceability of the part or system. In other words, when the inspection or test is completed the part can still be used.

In contrast to NDT, other tests are destructive in nature and are therefore done on a limited number of samples (“lot sampling”), rather than on the materials, components or assemblies actually being put into service.

These destructive tests are often used to determine the physical properties of materials such as impact resistance, ductility, yield and ultimate tensile strength, fracture toughness and fatigue strength, but discontinuities and differences in material characteristics are more effectively found by NDT.

Today modern nondestructive tests are used in manufacturing, fabrication and in-service inspections to ensure product integrity and reliability, to control manufacturing processes, lower production costs and to maintain a uniform quality level. During construction, NDT is used to ensure the quality of materials and joining processes during the fabrication and erection phases, and in-service NDT inspections are used to ensure that the products in use continue to have the integrity necessary to ensure their usefulness and the safety of the public.

It should be noted that while the medical field uses many of the same processes, the term “nondestructive testing” is generally not used to describe medical applications.

NDT Test Methods

Test method names often refer to the type of penetrating medium or the equipment used to perform that test. Current NDT methods are: Acoustic Emission Testing (AE), Electromagnetic Testing (ET), Guided Wave Testing (GW), Ground Penetrating Radar (GPR), Laser Testing Methods (LM), Leak Testing (LT), Magnetic Flux Leakage (MFL), Microwave Testing, Liquid Penetrant Testing (PT), Magnetic Particle Testing (MT), Neutron Radiographic Testing (NR), Radiographic Testing (RT), Thermal/Infrared Testing (IR), Ultrasonic Testing (UT), Vibration Analysis (VA) and Visual Testing (VT).

The six most frequently used test methods are MT, PT, RT, UT, ET and VT. Each of these test methods will be described here, followed by the other, less often used test methods.

Magnetic Particle Testing (MT)

Magnetic Particle Testing uses one or more magnetic fields to locate surface and near-surface discontinuities in ferromagnetic materials.  The magnetic field can be applied with a permanent magnet or an electromagnet.  When using an electromagnet, the field is present only when the current is being applied.  When the magnetic field encounters a discontinuity transverse to the direction of the magnetic field, the flux lines produce a magnetic flux leakage field of their own as shown in Figure 1.  Because magnetic flux lines don’t travel well in air, when very fine colored ferromagnetic particles (“magnetic particles”) are applied to the surface of the part the particles will be drawn into the discontinuity, reducing the air gap and producing a visible indication on the surface of the part.  The magnetic particles may be a dry powder or suspended in a liquid solution, and they may be colored with a visible dye or a fluorescent dye that fluoresces under an ultraviolet (“black”) light.

MT Techniques

Yokes

Most field inspections are performed using a Yoke, as shown at the right.  As shown in Figure 2(a), an electric coil is wrapped around a central core, and when the current is applied, a magnetic field is generated that extends from the core down through the articulated legs into the part.  This is known as longitudinal magnetization because the magnetic flux lines run from one leg to the other.

When the legs are placed on a ferromagnetic part and the yoke is energized, a magnetic field is introduced into the part as shown in (b).  Because the flux lines do run from one leg to the other, discontinuities oriented perpendicular to a line drawn between the legs can be found.  To ensure no indications are missed, the yoke is used once in the position shown then used again with the yoke turned 90o so no indications are missed.  Because all of the electric current is contained in the yoke and only the magnetic field penetrates the part, this type of application is known as indirect induction.

Prods

Prod units use direct induction, where the current runs through the part and a circular magnetic field is generated around the legs as shown in Figure 3.  Because the magnetic field between the prods is travelling perpendicular to a line drawn between the prods, indications oriented parallel to a line drawn between the prods can be found.  As with the yoke, two inspections are done, the second with the prods oriented 90o to the first application.

Coils

Electric coils are used to generate a longitudinal magnetic field.  When energized, the current creates a magnetic field around the wires making up the coil so that the resulting flux lines are oriented through the coil as shown at the right.  Because of the longitudinal field, indications in parts placed in a coil are oriented transverse to the longitudinal field.

Heads

Most horizontal wet bath machines (“bench units”) have both a coil and a set of heads through which electric current can be passed, generating a magnetic field.  Most use fluorescent magnetic particles in a liquid solution, hence the name “wet bath.”   A typical bench unit is shown at the right.  When testing a part between the heads, the part is placed between the heads, the moveable head is moved up so that the part being tested is held tightly between the heads, the part is wetted down with the bath solution containing the magnetic particles and the current is applied while the particle are flowing over the part.  Since the current flow is from head to head and the magnetic field is oriented 90o to the current, indications oriented parallel to a line between the heads will be visible.  This type of inspection is commonly called a “head shot.”

Central Conductor

When testing hollow parts such as pipes, tubes and fittings, a conductive circular bar can be placed between the heads with the part suspended on the bar (the “central conductor”) as shown in Figure 6.  The part is then wetted down with the bath solution and the current is applied, travelling through the central conductor rather than through the part.  The ID and OD of the part can then be inspected.  As with a head shot, the magnetic field is perpendicular to the current flow, wrapping around the test piece, so indications running axially down the length of the part can be found using this technique.